67 research outputs found

    Gravitational waves: search results, data analysis and parameter estimation

    Get PDF
    The Amaldi 10 Parallel Session C2 on gravitational wave (GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity

    Searching for gravitational waves from compact binaries with precessing spins

    Get PDF
    Current searches for gravitational waves from compact-object binaries with the LIGO and Virgo observatories employ waveform models with spins aligned (or anti-aligned) with the orbital angular momentum. Here, we derive a new statistic to search for compact objects carrying generic (precessing) spins. Applying this statistic, we construct banks of both aligned- and generic-spin templates for binary black holes and neutron-star--black-hole binaries, and compare the effectualness of these banks towards simulated populations of generic-spin systems. We then use these banks in a pipeline analysis of Gaussian noise to measure the increase in background incurred by using generic- instead of aligned-spin banks. Although the generic-spin banks have a factor of ten to twenty more templates than the aligned-spin banks, we find an overall improvement in signal recovery at fixed false-alarm rate for systems with high-mass ratio and highly precessing spins ---up to 60\% for neutron-star--black-hole mergers. This gain in sensitivity comes at a small loss of sensitivity (\lesssim4\%) for systems that are already well-covered by aligned-spin templates. Since the observation of even a single binary merger with misalinged spins could provide unique astrophysical insights into the formation of these sources, we recommend that the method described here be developed further to mount a viable search for generic-spin binary mergers in LIGO/Virgo data

    Cell-type-specific optogenetic stimulation of the locus coeruleus induces slow-onset potentiation and enhances everyday memory in rats

    Get PDF
    Memory formation is typically divided into phases associated with encoding, storage, consolidation, and retrieval. The neural determinants of these phases are thought to differ. This study first investigated the impact of the experience of novelty in rats incurred at a different time, before or after, the precise moment of memory encoding. Memory retention was enhanced. Optogenetic activation of the locus coeruleus mimicked this enhancement induced by novelty, both when given before and after the moment of encoding. Optogenetic activation of the locus coeruleus also induced a slow-onset potentiation of field potentials in area CA1 of the hippocampus evoked by CA3 stimulation. Despite the locus coeruleus being considered a primarily noradrenergic area, both effects of such stimulation were blocked by the dopamine D1/D5 receptor antagonist SCH 23390. These findings substantiate and enrich the evidence implicating the locus coeruleus in cellular aspects of memory consolidation in hippocampus.</p

    Toward Early-Warning Detection of Gravitational Waves from Compact Binary Coalescence

    Get PDF
    Rapid detection of compact binary coalescence (CBC) with a network of advanced gravitational-wave detectors will offer a unique opportunity for multi-messenger astronomy. Prompt detection alerts for the astronomical community might make it possible to observe the onset of electromagnetic emission from (CBC). We demonstrate a computationally practical filtering strategy that could produce early-warning triggers before gravitational radiation from the final merger has arrived at the detectors.Comment: 16 pages, 7 figures, published in ApJ. Reformatted preprint with emulateap

    The GstLAL Search Analysis Methods for Compact Binary Mergers in Advanced LIGO's Second and Advanced Virgo's First Observing Runs

    Get PDF
    After their successful first observing run (September 12, 2015 - January 12, 2016), the Advanced LIGO detectors were upgraded to increase their sensitivity for the second observing run (November 30, 2016 - August 26, 2017). The Advanced Virgo detector joined the second observing run on August 1, 2017. We discuss the updates that happened during this period in the GstLAL-based inspiral pipeline, which is used to detect gravitational waves from the coalescence of compact binaries both in low latency and an offline configuration. These updates include deployment of a zero-latency whitening filter to reduce the over-all latency of the pipeline by up to 32 seconds, incorporation of the Virgo data stream in the analysis, introduction of a single-detector search to analyze data from the periods when only one of the detectors is running, addition of new parameters to the likelihood ratio ranking statistic, increase in the parameter space of the search, and introduction of a template mass-dependent glitch-excision thresholding method.Comment: 12 pages, 7 figures, to be submitted to Phys. Rev. D, comments welcom

    The GstLAL template bank for spinning compact binary mergers in the second observation run of Advanced LIGO and Virgo

    Get PDF
    We describe the methods used to construct the aligned-spin template bank of gravitational waveforms used by the GstLAL-based inspiral pipeline to analyze data from the second observing run of Advanced LIGO and Virgo. The bank expands upon the parameter space covered during the first observing run, including coverage for merging compact binary systems with total mass between 2 M\mathrm{M}_{\odot} and 400 M\mathrm{M}_{\odot} and mass ratios between 1 and 97.989. Thus the systems targeted include merging neutron star-neutron star systems, neutron star-black hole binaries, and black hole-black hole binaries expanding into the intermediate-mass range. Component masses less than 2 M\mathrm{M}_{\odot} have allowed (anti-)aligned spins between ±0.05\pm0.05 while component masses greater than 2 M\mathrm{M}_{\odot} have allowed (anti-)aligned between ±0.999\pm0.999. The bank placement technique combines a stochastic method with a new grid-bank method to better isolate noisy templates, resulting in a total of 677,000 templates.Comment: 9 pages, 13 figure

    Synthesis of ZnO/PMMA nanocomposite by low-temperature atomic layer deposition for possible photocatalysis applications

    Get PDF
    Zinc oxide is one of the most widely used semiconductors, thanks to its shallow band-gap of 3.3 eV, low cost, inertness, and abundance in nature. On the other hand, poly (methyl methacrylate) (PMMA) is a common thermoplastic material used in many applications namely because of its transparency, environmental stability, and low cost. The realization of novel inorganic/polymeric hybrid nanomaterials is appealing, being beneficial in a variety of applications including photocatalysis, sensing, energy harvesting and storage, and optoelectronics, but also challenging. In this work, ZnO and PMMA were combined using the atomic layer deposition (ALD) technique. The morphology of the samples was evaluated by scanning electron microscopy (SEM), while the crystallinity has been investigated using X-ray diffraction (XRD) analyses. In order to give a proof of concept of a possible application of the materials synthetized, the photocatalytic activity of the nanocomposites has been tested by the degradation of two organic pollutants in water: methylene blue (MB) dye and sodium lauryl sulfate (SDS), an anionic surfactant. The results have shown that all samples are active in the removal of both pollutants (i.e., MB and SDS), opening the route for the application of the proposed nanocomposites in water treatment.peer-reviewe

    Gravitational waves: search results, data analysis and parameter estimation

    Get PDF
    The Amaldi 10 Parallel Session C2 on gravitational wave (GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity

    Improving the sensitivity of a search for coalescing binary black holes with nonprecessing spins in gravitational wave data

    Get PDF
    We demonstrate for the first time a search pipeline with improved sensitivity to gravitational waves from coalescing binary black holes with spins aligned to the orbital angular momentum by the inclusion of spin effects in the search templates. We study the pipeline recovery of simulated gravitational wave signals from aligned-spin binary black holes added to real detector noise, comparing the pipeline performance with aligned-spin filter templates to the same pipeline with nonspinning filter templates. Our results exploit a three-parameter phenomenological waveform family that models the full inspiral-merger-ringdown coalescence and treats the effect of aligned spins with a single effective spin parameter χ. We construct template banks from these waveforms by a stochastic placement method and use these banks as filters in the recently developed gstlal search pipeline. We measure the observable volume of the analysis pipeline for binary black hole signals with M_(total) and χ∈[0,0.85]. We find an increase in observable volume of up to 45% for systems with 0.2≤χ≤0.85 with almost no loss of sensitivity to signals with 0≤χ≤0.2. We also show that the use of spinning templates in the search pipeline provides for more accurate recovery of the binary mass parameters as well as an estimate of the effective spin parameter. We demonstrate this analysis on 25.9 days of data obtained from the Hanford and Livingston detectors in LIGO’s fifth observation run
    corecore